DX-102-11

### Datasheet

## TX-02 Berkeley Mono<sup>™</sup> Typeface

**U.S. Graphics Company** 

#### **Document Information**

TX-02 Berkeley Mono<sup>™</sup> Datasheet

Document ID DX-102-11

December, 2024

#### Introduction

TX-02 Berkeley Mono<sup>™</sup> is a love letter to the golden era of computing. The era that gave rise to a generation of people that celebrated automation and reveled in the joy of computing, when transistors replaced cogs, and machinereadable typefaces were developed, for when humans and machines truly interfaced on an unprecedented scale.

Berkeley Mono<sup>™</sup> wears a \*NIX T-shirt and aspires to be etched on control panels in black synthetic lacquer. It is Adrian Frutiger visits Bell Labs, it is Gene Kranz's command. It operates with calibrated precision and has a datasheet.

Berkeley Mono<sup>™</sup> is a typeface for professionals.

**Marketing Poster** 

# TX-02 BERKELEY MONO™ TYPEFACE



#### **Typeface Specification**

| Family Name            | TX-02                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------|
| Family Name (Variable) | TX-02 Variable                                                                                      |
| Units per Em           | 1000                                                                                                |
| Version                | 2.000                                                                                               |
| Designer               | Neil Panchal                                                                                        |
| Designer URL           | https://neil.computer                                                                               |
| Manufacturer           | U.S. Graphics, LLC                                                                                  |
| Manufacturer URL       | https://usgraphics.com                                                                              |
| Copyright              | © Copyright 2024, U.S. Graphcis, LLC. All Rights Reserved.                                          |
| License                | Proprietary and non-transferrable. See License URL for full details.                                |
| License URL            | https://usgraphics.com/legal/license                                                                |
| Description            | A love letter to the golden era of computing.                                                       |
| Variable axes          | Weight (wght)                                                                                       |
| Typo metrics           | Yes                                                                                                 |
| Fixed Pitch            | Yes                                                                                                 |
| fsType embedding       | Installable                                                                                         |
| Subsetting             | Allowed                                                                                             |
| Unicode ranges         | Basic Latin, Latin-1 Supplement, Latin Extended-A, Latin Extended-B                                 |
| Width Cuts             | UltraCondensed, ExtraCondensed, Condensed, SemiCondensed, Normal                                    |
| Weight Cuts            | Thin, ExtraLight, Light, SemiLight, Retina, Regular, Book, Medium, SemiBold, Bold, ExtraBold, Black |
| Slant Cuts             | Upright, Oblique                                                                                    |
| Variable Axes          | Width (wdth) axis, Weight (wght) axis, Slant (slnt) axis                                            |
| Desktop Formats        | OTF, TTF                                                                                            |
| Web Formats            | W0FF2                                                                                               |
| Variable Formats       | OTF, TTF, WOFF2                                                                                     |

| 72       | ENGINEERING |
|----------|-------------|
| 60       | ENGINEERING |
| 48       | ENGINEERING |
| 42       | ENGINEERING |
| 36       | ENGINEERING |
| 30       | ENGINEERING |
| 27       | ENGINEERING |
| 24       | ENGINEERING |
| 20       | ENGINEERING |
| 18       | ENGINEERING |
| 16       | ENGINEERING |
| 14       | ENGINEERING |
| 12<br>10 | ENGINEERING |
| IU       | ENGINEERING |

| 72       | ENGINEERING |
|----------|-------------|
| 60       | ENGINEERING |
| 48       | ENGINEERING |
| 42       | ENGINEERING |
| 36       | ENGINEERING |
| 30       | ENGINEERING |
| 27       | ENGINEERING |
| 24       | ENGINEERING |
| 20       | ENGINEERING |
| 18       | ENGINEERING |
| 16       | ENGINEERING |
| 14       | ENGINEERING |
| 12<br>10 | ENGINEERING |
|          |             |

| 72       | ENGINEERING |
|----------|-------------|
| 60       | ENGINEERING |
| 48       | ENGINEERING |
| 42       | ENGINEERING |
| 36       | ENGINEERING |
| 30       | ENGINEERING |
| 27       | ENGINEERING |
| 24       | ENGINEERING |
| 20       | ENGINEERING |
| 18       | ENGINEERING |
| 16       | ENGINEERING |
| 14       | ENGINEERING |
| 12<br>10 |             |
| 10       | ENGINEEKING |

| 72       | ENGINEERING |
|----------|-------------|
| 60       | ENGINEERING |
| 48       | ENGINEERING |
| 42       | ENGINEERING |
| 36       | ENGINEERING |
| 30       | ENGINEERING |
| 27       | ENGINEERING |
| 24       | ENGINEERING |
| 20       | ENGINEERING |
| 18       | ENGINEERING |
| 16       | ENGINEERING |
| 14       | ENGINEERING |
| 12<br>10 | ENGINEERING |
|          |             |

#### Uppercase

| Α    | В    | С    | D    | Ε    | F    | G    | Η    | Ι    | J    | Κ    | L    | Μ    | Ν    | 0    | Ρ    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0041 | 0042 | 0043 | 0044 | 0045 | 0046 | 0047 | 0048 | 0049 | 004A | 004B | 004C | 004D | 004E | 004F | 0050 |
| Q    | R    | S    | Τ    | U    | V    | W    | Х    | Y    | Ζ    |      |      |      |      |      |      |
| 0051 | 0052 | 0053 | 0054 | 0055 | 0056 | 0057 | 0058 | 0059 | 005A |      |      |      |      |      |      |

#### Lowercase

| <b>a</b> | <b>b</b> | <b>C</b> | 0064 | <b>e</b> | <b>f</b> | <b>O</b> 0067 | <b>h</b> | 0069 | <b>J</b><br>006A | <b>k</b> | <b>]</b><br>006C | <b>m</b><br>006D | <b>N</b><br>006E | <b>O</b> 006F | <b>P</b> |
|----------|----------|----------|------|----------|----------|---------------|----------|------|------------------|----------|------------------|------------------|------------------|---------------|----------|
| q        | r        | S        | t    | U        | V        | W             | X        | У    | Ζ                |          |                  |                  |                  |               |          |
| 0071     | 0072     | 0073     | 0074 | 0075     | 0076     | 0077          | 0078     | 0079 | 007A             |          |                  |                  |                  |               |          |

#### Numerals

| 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |  |  |  |
|------|------|------|------|------|------|------|------|------|------|--|--|--|
| 0030 | 0031 | 0032 | 0033 | 0034 | 0035 | 0036 | 0037 | 0038 | 0039 |  |  |  |

#### Computer programming symbols

| ۵    | ļ    | #    | \$   | %    | &    | ?    | •    | ^    | -    | ,    | ١    | 11   | •    | ;    |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0040 | 0021 | 0023 | 0024 | 0025 | 0026 | 003F | 0060 | 005E | 002E | 002C | 0027 | 0022 | 003A | 003B | 007C |
| (    | )    | Γ    | ]    | {    | }    | <    | >    |      | /    | ╋    |      | *    | ~    |      |      |
| 0028 | 0029 | 005B | 005D | 007B | 007D | 003C | 003E | 005C | 002F | 002B | 003D | 002A | 007E | 005F | 002D |

Uppercase (Accented)

| Á    | Ă        | Â                | Ä                | À        | Ā        | A                | Å    | Ã    | Æ    | Ć    | Č    | Ç                | Ċ    | Ð    | Ð    |
|------|----------|------------------|------------------|----------|----------|------------------|------|------|------|------|------|------------------|------|------|------|
| 00C1 | 0102     | 00C2             | 00C4             | 00C0     | 0100     | 0104             | 00C5 | 00C3 | 00C6 | 0106 | 010C | <b>5</b><br>00C7 | 010A | 00D0 | 0110 |
| V    |          | V                |                  |          |          |                  |      |      |      |      |      |                  |      |      |      |
| Ď    | É        | É                | Ê                | Ê        | Ē        | È                | E    | Ę    | Ð    | Ğ    | Ģ    | Ġ                | Ħ    | IJ   | Í    |
| 010E | 00C9     | 011A             | 00CA             | 00CB     | 0116     | 00C8             | 0112 | 0118 | 018F | 011E | 0122 | 0120             | 0126 | 0132 | 00CD |
| Î    | Ϊ        | İ                | Ì                | Ī        | Į        | Ķ                | Ĺ    | Ľ    | Ļ    | Ł    | Ń    | Ň                | Ņ    | Ñ    | Ó    |
| 00CE | 00CF     | 0130             | 00CC             | 012A     | 012E     | 0136             | 0139 | 013D | 013B | 0141 | 0143 | 0147             | 0145 | 00D1 | 00D3 |
| Ô    | Ö        | Ò                | Ő                | Ō        | Ø        | Õ                | Œ    | Þ    | Ŕ    | Ř    | Ŗ    | Ś                | Š    | Ş    | Ş    |
| 00D4 | 00D6     | 00D2             | 0150             | 014C     | 00D8     | 00D5             | 0152 | 00DE | 0154 | 0158 | 0156 | 015A             | 0160 | 015E | 0218 |
| ß    | Ť        | Ţ                | Ţ                | Ú        | Û        | Ü                | Ù    | Ű    | Ū    | Ų    | Ů    | Ŵ                | Ŵ    | Ŵ    | Ŵ    |
| 1E9E | 0164     | 0162             | 021A             | 00DA     | 00D B    | 00DC             | 00D9 | 0170 | 016A | 0172 | 016E | 1E82             | 0174 | 1E84 | 1E80 |
| Ý    | <b>Ŷ</b> | <b>Y</b><br>0178 | <b>Y</b><br>1EF2 | <b>Ž</b> | <b>Ž</b> | <b>T</b><br>017B |      |      |      |      |      |                  |      |      |      |

Lowercase (Accented)

| á                 | ă                | â                  | ä                | à                | ā                | а            | å    | ã    | æ    | ć                | č                | С                | Ċ                  | ð                  | ď                  |
|-------------------|------------------|--------------------|------------------|------------------|------------------|--------------|------|------|------|------------------|------------------|------------------|--------------------|--------------------|--------------------|
| 00E1              | 0103             | 00E2               | 00E4             | 00E0             | 0101             | 0105         | 00E5 | 00E3 | 00E6 | 0107             | 010D             | <b>3</b><br>00E7 | 010B               | 00F0               | 010F               |
| Ь                 | é                | ě                  | ê                | ë                | ė                | è            | ē    | e    | А    | ă                | ά                | ġ                | ħ                  | 7                  | í                  |
| 0111              | 00E9             | 011B               | OOEA             | OOEB             | 0117             | 00E8         | 0113 | 0119 | 0259 | 011F             | 0123             | 0121             | 0127               | 0131               | 00ED               |
| î                 | ï                | ì                  |                  | ī                | -                | 7            | k    | í    | 7'   | ٦                | $\mathbf{l}$     | ń                | ň                  | n                  | ñ                  |
| 00EE              | 00EF             | OOEC               | 0133             | 012B             | 012F             | 0237         | 0137 | 013A | 013E | <b>7</b><br>013C | 0142             | 0144             | 0148               | 0146               | 00F1               |
| ń                 | ô                | ö                  | ò                | ő                | ō                | Ø            | õ    | m    | h    | ŕ                | ř                | r                | ć                  | č                  | S                  |
| 00F3              | 00F4             | 00F6               | 00F2             | 0151             | 014D             | 00F8         | 00F5 | 0153 | 00FE | 0155             | 0159             | 0157             | 015B               | 0161               | <b>9</b><br>015F   |
| C                 | R                | ť                  | ÷                | ≁                | <b>,</b>         |              |      | ìı   | //   | -                |                  | 0                | \ <b>\</b> \       |                    |                    |
| 0219              | 00DF             | 0165               | 0163             | 021B             | 00FA             | 00FB         | 00FC | 00F9 | 0171 | 016B             | <b>U</b><br>0173 | 016F             | <b>V V</b><br>1E83 | <b>V V</b><br>0175 | <b>V V</b><br>1E85 |
|                   | <i>.</i> ,       | $\hat{\mathbf{v}}$ |                  | Ň                | 4                | ž            |      |      |      |                  |                  |                  |                    |                    |                    |
| <b>VV</b><br>1E81 | <b>Y</b><br>00FD | <b>Y</b><br>0177   | <b>Y</b><br>00FF | <b>Y</b><br>1EF3 | <b>L</b><br>017A | <b>0</b> 17E | 017C |      |      |                  |                  |                  |                    |                    |                    |

#### Accents

| ••   |      | •    | /    | //   | ^    | V    | V    | 0    |      |      |      |      | 1    |      |  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|      |      |      |      |      |      |      |      |      | 2    |      | 5    | C    |      | ,    |  |
| 00A8 | 02D9 | 0060 | 00B4 | 02DD | 02C6 | 02C7 | 02D8 | 02DA | 02DC | 00AF | 00B8 | 02DB | 0312 | 0326 |  |

#### **Standard Punctuation**

| -    | ,    | •               | ;    |      |      | ī    | ?    | ż    |      | •    | *    | #    | /    |      |      |
|------|------|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 002E | 002C | 003A            | 003B | 2026 | 0021 | 00A1 | 003F | 00BF | 00B7 | 2022 | 002A | 0023 | 002F | 005C | 002D |
|      |      | _               |      |      | (    | )    | {    | }    | Γ    | ]    | ,    | ,,,  | "    | //   | 1    |
| 2013 | 2014 | 2010            | 005F | 2017 | 0028 | 0029 | 007B | 007D | 005B | 005D | 201A | 201E | 201C | 201D | 2018 |
| 1    | ~~   | <b>&gt;&gt;</b> | <    | >    |      | I    |      |      |      |      |      |      |      |      |      |
| 2019 | 00AB | 00BB            | 2039 | 203A | 0022 | 0027 |      |      |      |      |      |      |      |      |      |

#### Symbols

2030

25CC

25CA

FFFD

| G    | &    | ¶          | §        | C    | R    | ТМ   | 0    |          |      |      | I    | t    | ‡    |      | ¢    |
|------|------|------------|----------|------|------|------|------|----------|------|------|------|------|------|------|------|
| 0040 | 0026 | 00B6       | 00A7     | 00A9 | 00AE | 2122 | 00B0 | 2032     | 2033 | 007C | 00A6 | 2020 | 2021 | 212E | 00A2 |
| Ø    | \$   | €          | 毛        | ₽    | ₹    | £    | ¥    |          | +    |      | ×    |      | =    | ≠    | >    |
| 00A4 | 0024 | 20AC       | 20BA     | 20BD | 20B9 | 00A3 | 00A5 | 2261     | 002B | 2212 | 00D7 | 00F7 | 003D | 2260 | 003E |
| <    | 2    | $\leq$     | <u>+</u> | ~    | ~    |      | ^    | $\infty$ | ſ    | Π    | Σ    |      | 9    | μ    | %    |
| 003C | 2265 | 2264       | 00B1     | 2248 | 007E | 00AC | 005E | 221E     | 222B | 220F | 2211 | 221A | 2202 | 00B5 | 0025 |
| %    | •••• | $\Diamond$ |          |      |      |      |      |          |      |      |      |      |      |      |      |

#### Arrows

|      | 7    | $\rightarrow$ | 7    | <b>1</b> | Ľ    | $\leftarrow$ | Z    | $\Leftrightarrow$ | $\mathbf{\hat{T}}$ |  |  |  |
|------|------|---------------|------|----------|------|--------------|------|-------------------|--------------------|--|--|--|
| 2191 | 2197 | 2192          | 2198 | 2193     | 2199 | 2190         | 2196 | 2194              | 2195               |  |  |  |

#### **Box Drawing Characters**

| 2581 | 2582    | 2583 | 2584 | 2585 | 2586 | 2587             | 2588     | 2580 | 2594 | 258F | 258E | 258D | 258C | 258B  | 258A |
|------|---------|------|------|------|------|------------------|----------|------|------|------|------|------|------|-------|------|
|      |         |      |      |      |      |                  |          |      |      |      |      |      |      | ····· |      |
| 2589 | 2590    | 2595 | 2596 | 2597 | 2598 | 2599             | 259A     | 259B | 259C | 259D | 259E | 259F | 2591 | 2592  | 2593 |
|      |         |      | ▼    |      | Δ    | $\triangleright$ | $\nabla$ | 4    | ٦٢   | ה    | Г    |      | Ţ    |       | L    |
| 25A0 | 25B2    | 25B6 | 25BC | 25C0 | 25B3 | 25B7             | 25BD     | 25C1 | 2566 | 2557 | 2554 | 2550 | 2569 | 255D  | 255A |
|      | JL<br>T | ┨    | L    | T    | 7    | Г                |          | L    |      | L    |      | ╉    | -    | ŀ     | X    |
| 2551 | 256C    | 2563 | 2560 | 252C | 2510 | 250C             | 2500     | 2534 | 2518 | 2514 | 2502 | 253C | 2524 | 251C  | 2573 |
| 2572 | 2571    |      |      |      |      |                  |          |      |      |      |      |      |      |       |      |

#### **Powerline Glyphs**

| Y    | •    | L<br>N | C<br>N |      | >    |      | <    |  |  |  |  |
|------|------|--------|--------|------|------|------|------|--|--|--|--|
| E0A0 | E0A2 | E0A1   | E0A3   | E0B0 | E0B1 | E0B2 | E0B3 |  |  |  |  |

#### **Stylistic Sets**

| 0    | 0    | Ŋ    | 0    | 7    | 7    |  |  |  |  |  |
|------|------|------|------|------|------|--|--|--|--|--|
| ss01 | ss02 | ss03 | ss04 | ss05 | ss06 |  |  |  |  |  |

#### Programming Ligatures - Group A

|      | •    | . =       |      | •    | -    |      | •    | <    | •    | :    | •    | :    | :    |  |
|------|------|-----------|------|------|------|------|------|------|------|------|------|------|------|--|
| 002E | 002E | 002E 003D | 002E | 002E | 002E | 002E | 002E | 003C | 003A | 003A | 003A | 003A | 003A |  |

|      | =    |      | -    | =    | • ,  | ;    | ;    | ;    | ;    | ?    | ?    | ?    | ?    | ?    |  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 003A | 003D | 003A | 003A | 003D | 003B | 003B | 003B | 003B | 003B | 003F | 003F | 003F | 003F | 003F |  |

|      | ?    | ?    | •    |      | ?    | ?    | •    | ?    | =    | *    | *    | *    | *    | *    |  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 002E | 003F | 003F | 002E | 003A | 003F | 003F | 003A | 003F | 003D | 002A | 002A | 002A | 002A | 002A |  |

| /    | *    | */        | /*>       | *    |  |  |  |  |
|------|------|-----------|-----------|------|--|--|--|--|
| 002F | 002A | 002A 002F | 002F 002A | 002A |  |  |  |  |

| < –                                                                                                                                                                        | _                                                                                                                                                                                  | >                                                                                                                                                                                                                                                                                 | _                                                       | <                                                      | >                                                     | _                                                      | <                                                      | ( —                                                    |                                                       |                                                        | -                                                     | >                                                      |                                                       |                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                            | 002D                                                                                                                                                                               | 0025                                                                                                                                                                                                                                                                              | 002D                                                    | 0020                                                   | 0025                                                  | 002D                                                   | 0020                                                   | 002D                                                   | 002D                                                  | 002D                                                   | 002D                                                  | 0025                                                   |                                                       |                                                       |
| , UU2D                                                                                                                                                                     | 002D                                                                                                                                                                               | 003E                                                                                                                                                                                                                                                                              | 002D                                                    | 0030                                                   | 003E                                                  | 002D                                                   | 0030                                                   | 002D                                                   | 002D                                                  | 002D                                                   | 002D                                                  | 003E                                                   |                                                       |                                                       |
| <<                                                                                                                                                                         | _                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                 | >                                                       | >                                                      |                                                       | <                                                      | <                                                      | >                                                      | >                                                     |                                                        | <                                                     | ( —                                                    | <                                                     |                                                       |
| C 003C                                                                                                                                                                     | 002D                                                                                                                                                                               | 002D                                                                                                                                                                                                                                                                              | 003E                                                    | 003E                                                   | 002D                                                  | 003C                                                   | 003C                                                   | 003E                                                   | 003E                                                  | 002D                                                   | 003C                                                  | 002D                                                   | 003C                                                  |                                                       |
| > -                                                                                                                                                                        | >                                                                                                                                                                                  | <                                                                                                                                                                                                                                                                                 | ( —                                                     |                                                        |                                                       | -                                                      | >                                                      |                                                        |                                                       |                                                        |                                                       |                                                        |                                                       |                                                       |
| 002D                                                                                                                                                                       | 003E                                                                                                                                                                               | 003C                                                                                                                                                                                                                                                                              | 002D                                                    | 007C                                                   | 007C                                                  | 002D                                                   | 003E                                                   | 002D                                                   | 007C                                                  | 007C                                                   | 002D                                                  | 007C                                                   | 007C                                                  | 002D                                                  |
| </th <th></th> <th>_</th> <th>&lt;</th> <th>&lt;#</th> <th>·</th> <th>_</th> <th>&lt;</th> <th>=</th> <th>_</th> <th>&gt;</th> <th>&gt;</th> <th></th> <th></th> <th></th> |                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                 | <                                                       | <#                                                     | ·                                                     | _                                                      | <                                                      | =                                                      | _                                                     | >                                                      | >                                                     |                                                        |                                                       |                                                       |
| 0021                                                                                                                                                                       | 002D                                                                                                                                                                               | 002D                                                                                                                                                                                                                                                                              | 003C                                                    | 0023                                                   | 002D                                                  | 002D                                                   | 003C                                                   | 003D                                                   | 003D                                                  | 003E                                                   | 003D                                                  | 003E                                                   |                                                       |                                                       |
| <=                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                         | >                                                      | <                                                     | <                                                      |                                                        |                                                        | :>                                                    | >                                                      |                                                       | :<                                                     | <                                                     |                                                       |
| C 003D                                                                                                                                                                     | 003D                                                                                                                                                                               | 003D                                                                                                                                                                                                                                                                              | 003D                                                    | 003E                                                   | 003C                                                  | 003C                                                   | 003D                                                   | 003D                                                   | 003E                                                  | 003E                                                   | 003D                                                  | 003C                                                   | 003C                                                  |                                                       |
| >>                                                                                                                                                                         |                                                                                                                                                                                    | <                                                                                                                                                                                                                                                                                 | ( =                                                     | <                                                      | >                                                     | -                                                      | >                                                      | <                                                      |                                                       |                                                        |                                                       |                                                        | >                                                     |                                                       |
| 003E                                                                                                                                                                       | 003D                                                                                                                                                                               | 003C                                                                                                                                                                                                                                                                              | 003D                                                    | 003C                                                   | 003E                                                  | 003D                                                   | 003E                                                   | 003C                                                   | 003D                                                  | 007C                                                   | 007C                                                  | 003D                                                   | 003E                                                  |                                                       |
| <=                                                                                                                                                                         | >                                                                                                                                                                                  | <                                                                                                                                                                                                                                                                                 | <=                                                      | =;                                                     | >                                                     |                                                        |                                                        |                                                        |                                                       |                                                        | /                                                     | //                                                     |                                                       |                                                       |
| C 003D                                                                                                                                                                     | 003E                                                                                                                                                                               | 003C                                                                                                                                                                                                                                                                              | 003D                                                    | 003D                                                   | 003E                                                  | 007C                                                   | 007C                                                   | 003D                                                   | 007C                                                  | 003D                                                   | 002F                                                  | 002F                                                   | 003D                                                  |                                                       |
|                                                                                                                                                                            | 0025                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   | 002D                                                    |                                                        |                                                       |                                                        |                                                        |                                                        |                                                       |                                                        |                                                       |                                                        |                                                       |                                                       |
|                                                                                                                                                                            | <ul> <li>002D</li> <li>003C</li> <li>003C</li> <li>003C</li> <li>003C</li> <li>003D</li> <li>003D</li> <li>003D</li> <li>003E</li> <li>003E</li> <li>003D</li> <li>003D</li> </ul> | 002D     002D       002C     002D       003C     002D       002D     003E       002D     003E       002D     003E       002D     003E       002D     003E       002D     003E       003D     003D       003E     003D       003E     003D       003E     003D       003E     003D | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### Programming Ligatures - Group C

| <    | <    | >            | >      | <     | <            | <    | >    | >           | >            | <            | >      | <    | \$   | \$           | >    |
|------|------|--------------|--------|-------|--------------|------|------|-------------|--------------|--------------|--------|------|------|--------------|------|
| 003C | 003C | 003E         | 003E   | 003C  | 003C         | 003C | 003E | 003E        | 003E         | 003C         | 003E   | 003C | 0024 | 0024         | 003E |
|      |      |              |        |       |              |      |      |             |              |              |        |      |      |              |      |
| <    | \$   | >            | <      | +     | +            | >    | <    | :+          | >            | <            | :      |      | <    |              |      |
| 003C | 0024 | 003E         | 003C   | 002B  | 002B         | 003E | 003C | 002B        | 003E         | 003C         | 003A   | 003A | 003C |              |      |
| <    |      | <            | >      | :     | •            | >    | <    | ~           | ~            | >            | <      | ~    | >    |              |      |
| 003C | 003A | 003C         | 003E   | 003A  | 003A         | 003E | 003C | 007E        | 007E         | 003E         | 003C   | 007E | 003E |              |      |
| 003C | 003C | <b>0</b> 07E | 003C   | 007E  | <b>0</b> 07E | 007E | 007E | <b>O03E</b> | <b>0</b> 07E | <b>0</b> 07E | C 003C | 007C | 007C | <b>0</b> 03E |      |
| 003C | 007C | <b>&gt;</b>  | 003C   | 007C  | 007C         | 007C | 007C | <b>&gt;</b> | 003C         | 007C         | 007C   | 007C |      |              |      |
|      |      |              | >      | <     | /            | /    | >    | <           | /            | >            | <      | *    | *    | >            |      |
| 007C | 007C | 007C         | 003E   | 003C  | 002F         | 002F | 003E | 003C        | 002F         | 003E         | 003C   | 002A | 002A | 003E         |      |
| 0030 | *    | <b>&gt;</b>  | ■<br>■ | 2003E | <b>&gt;</b>  |      |      |             |              |              |        |      |      |              |      |

Programming Ligatures - Group D

| #    | (    | #    | {    | #    | [    | ]    | #    | #    | !          | #    | ?    | #    | =    | #    | _    |
|------|------|------|------|------|------|------|------|------|------------|------|------|------|------|------|------|
| 0023 | 0028 | 0023 | 007B | 0023 | 005B | 005D | 0023 | 0023 | 0021       | 0023 | 003F | 0023 | 003D | 0023 | 005F |
| #    |      | (    | #    | #    | #    | #    | #    | #    | <i>‡</i> # | #7   | #    |      |      |      |      |
| 0023 | 005F | 0028 | 0023 | 0023 | 0023 | 0023 | 0023 | 0023 | 0023       | 0023 | 0023 |      |      |      |      |

Programming Ligatures - Group E

| [    |      |      | ]    | [    | <    | >    | ]    | {    |      | !    |      | ļ    | }    | {    |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 005B | 007C | 007C | 005D | 005B | 003C | 003E | 005D | 007B | 0021 | 0021 | 0021 | 0021 | 007D | 007B | 007C |
|      | }    | {    | {    | }    | }    | {    | {    |      | _    | -    |      | }    | }    |      |      |
| 007C | 007D | 007B | 007B | 007D | 007D | 007B | 007B | 002D | 002D | 002D | 002D | 007D | 007D |      |      |
| ł    | [ ]  |      |      | /    | /    | /    | /    | /    | ļ    | !    |      |      |      |      |      |
| 007B | 0021 | 002D | 002D | 002F | 002F | 002F | 002F | 002F | 0021 | 0021 |      |      |      |      |      |

#### Programming Ligatures - Group F

| W    | /W   | W    | þ    | _    | &    | 8    | 8    | 8    | 8    | &    | =    | ~    | b    | +    | +    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0077 | 0077 | 0077 | 0040 | 005F | 0026 | 0026 | 0026 | 0026 | 0026 | 0026 | 003D | 007E | 0040 | 002B | 002B |
| +    | •+   | +    |      |      |      | /    |      |      |      |      |      |      |      |      |      |
| 002B | 002B | 002B | 002F | 005C | 002F | 002F | 005F | 007C | 005F | 007C | 007C |      |      |      |      |

#### Programming Ligatures - Group G

| _    | •    |      |      |      |      | ! :  |      |      | =    |      | =    | _    |      | :/:  |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 003D | 003A | 003D | 003A | 003D | 003D | 0021 | 003D | 002F | 003D |
| _    | ~    | ~    |      | ^    | =    |      | _    |      | =    |      | =    | _    |      | ~    |      |
| 003D | 007E | 007E | 002D | 005E | 003D | 005F | 005F | 0021 | 003D | 0021 | 003D | 003D | 002D | 007E |      |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 002D | 002D | 002D | 002D | 002D |      |      |      |      |      |      |      |      |      |      |      |

#### **Programming Ligatures - Arithmetics**

| ╉    | +    |      |      | /    | —    | &    | 8    |      |      |      |      |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 002B | 002B | 002D | 002D | 002F | 003D | 0026 | 0026 | 007C | 007C | 007C | 007C | 003D |

#### **Programming Ligatures - Comparison**

| <    |      | >    |      | <    | =    | >    |  |  |  |
|------|------|------|------|------|------|------|--|--|--|
| 003C | 003D | 003E | 003D | 003C | 003D | 003E |  |  |  |

#### Programming Ligatures - Logic

| /    |      |      | /    |      |      |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 002F | 005C | 005C | 002F | 002D | 007C | 005F | 007C | 005F | 007C | 002D | 007C | 003D |

|      |      | _    |      |      | _    |  |  |  |  |
|------|------|------|------|------|------|--|--|--|--|
| 007C | 007C | 002D | 007C | 007C | 003D |  |  |  |  |

#### **Programming Ligatures - Scope**

|      | >    |      | >    |      | :    |      |      |  |  |  |
|------|------|------|------|------|------|------|------|--|--|--|
| 002D | 003E | 003D | 003E | 003A | 003A | 005F | 005F |  |  |  |

#### Programming Ligatures - Equality

|      | _    |      | _    | —    |      |      |      | /    | —    |      | =    |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 003D | 003D | 003D | 003D | 003D | 0021 | 003D | 003D | 002F | 003D | 0021 | 003D | 003D |

#### **Programming Ligatures - Bitwise**

| <    | <    | <    | <    | <    | <    | <    | =    | >    | >    | >    | >    | >    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 003C | 003C | 003C | 003C | 003C | 003C | 003C | 003D | 003E | 003E | 003E | 003E | 003E |

| >    | >=        |           | ^=        |  |
|------|-----------|-----------|-----------|--|
| 003E | 003E 003D | 007C 003D | XXXX 003D |  |

#### **Programming Ligatures - Comments**

| /    | *    | *    | /    | /    | *    | *    | /    | /    | /    | /    | /    |  |
|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 002F | 002A | 002A | 002F | 002F | 002A | 002A | 002F | 002F | 002F | 002F | 002F |  |

#### **Programming Ligatures - Other**

|      | >    |      | <    | >    | •    | <    | :    |      | •    |      | #    |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 003A | 003E | 003A | 003C | 003E | 003A | 003C | 003A | 003A | 003A | 003D | 0023 | 0021 |

#### Programming Ligatures - Other

| {    |      |      | }    | #    | [    |      | #    |  |  |  |
|------|------|------|------|------|------|------|------|--|--|--|
| 007B | 007C | 007C | 007D | 0023 | 005B | 005D | 0023 |  |  |  |

#### **Programming Ligatures - Markdown**

| #    | #    | #    | #    | #    | #    | #    | #    | #    |  |  |
|------|------|------|------|------|------|------|------|------|--|--|
| 0023 | 0023 | 0023 | 0023 | 0023 | 0023 | 0023 | 0023 | 0023 |  |  |

|      | _    |      | _    | _    |      |      |      |      |
|------|------|------|------|------|------|------|------|------|
|      | 1    |      |      |      | <br> | <br> | <br> | <br> |
| 002D | 002D | 002D | 002D | 002D |      |      |      |      |

#### **Programming Ligatures - HTML**

| <    | /    | <    |      |      |      | <    | /    | >    |      |      | >    |  |
|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 003C | 002F | 003C | 0021 | 002D | 002D | 003C | 002F | 003E | 002D | 002D | 003E |  |

| /    | >    | W    | W    | W    |  |  |  |  |
|------|------|------|------|------|--|--|--|--|
| 002F | 003E | 0077 | 0077 | 0077 |  |  |  |  |

#### **Programming Ligatures - Javascript**

| *    | *    |      | _    |      |      | _    |      | ?    | •    |  |  |
|------|------|------|------|------|------|------|------|------|------|--|--|
| 002A | 002A | 003D | 003D | 003D | 0021 | 003D | 003D | 003F | 002E |  |  |

#### Programming Ligatures - Go

| 003A 00 | 3D |  |  |  |  |  |
|---------|----|--|--|--|--|--|

#### Programming Ligatures - Java

| <    | >    | <    | ~    | >    |  |  |  |  |
|------|------|------|------|------|--|--|--|--|
| 003C | 003E | 003C | 007E | 003E |  |  |  |  |

#### Programming Ligatures - C#

| ?    | •    | ?    | ?    |  |  |  |  |  |
|------|------|------|------|--|--|--|--|--|
| 003F | 002E | 003F | 003F |  |  |  |  |  |

#### Programming Ligatures - Scala

|      | !    | _    |      | :    | _    |      | •    | •    | <    | :    | <    |  |
|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 003D | 0021 | 003D | 003D | 003A | 003D | 003A | 003A | 003A | 003C | 003A | 003C |  |

#### Programming Ligatures - Haskell

| =    | >    | >    |      | <    | <    | >    | =    | >    | <    | =    | <    |  |
|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 003D | 003E | 003E | 003D | 003C | 003C | 003E | 003D | 003E | 003C | 003D | 003C |  |

| <    | \$   | <    | \$   | >    | \$   | >    | <    | +    | <    | +    | >    |  |
|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 003C | 0024 | 003C | 0024 | 003E | 0024 | 003E | 003C | 002B | 003C | 002B | 003E |  |

| +    | >    | <    | *    | <    | *    | >    | *    | >    | <    | >    |      |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 002B | 003E | 003C | 002A | 003C | 002A | 003E | 002A | 003E | 003C | 003E | 002E | 003D |

| <    | >        | #      |      | ╋    | +    | -₽-  | ╋    | +    |  |  |
|------|----------|--------|------|------|------|------|------|------|--|--|
| 003C | 007C 003 | E 0023 | 003D | 002B | 002B | 002B | 002B | 002B |  |  |

#### **Programming Ligatures - Swift**

|  | . <       |  |  |  |  |      |
|--|-----------|--|--|--|--|------|
|  | 002E 003C |  |  |  |  | <br> |

#### **Programming Ligatures - Ruby**

|      |      |      |      |      |      | ~    |      | ~    | <    | =    | >    |  |
|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 002E | 002E | 002E | 002E | 002E | 003D | 007E | 0021 | 007E | 003C | 003D | 003E |  |

#### Programming Ligatures - F#

| <    |      |      |      | <    |      |      | <    |      |      | >    | %    | %    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 003C | 007C | 007C | 007C | 003C | 007C | 007C | 003C | 007C | 007C | 003E | 0025 | 0025 |

|      | >        |        |      |      | >    | <    |      |      |      |      | ]    |
|------|----------|--------|------|------|------|------|------|------|------|------|------|
| 007C | 007C 003 | E 007C | 007C | 007C | 003E | 003C | 003D | 005B | 007C | 007C | 005D |

| $\sim$ |      | ~    | $\sim$ |  |  |  |  |  |
|--------|------|------|--------|--|--|--|--|--|
| 007E   | 002D | 007E | 007E   |  |  |  |  |  |

#### **Programming Ligatures - Kotlin**

|      | -    |  |  |  |  |  |  |
|------|------|--|--|--|--|--|--|
|      |      |  |  |  |  |  |  |
|      |      |  |  |  |  |  |  |
|      |      |  |  |  |  |  |  |
| 0021 | 0021 |  |  |  |  |  |  |

#### **Programming Ligatures - R**

#### **Programming Ligatures - Clojure**

| #    | {    | #    | (    | #    | _    | #    | ,    | (    | #    | ?    | #    | •    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0023 | 007B | 0023 | 0028 | 0023 | 005F | 0023 | 005F | 0028 | 0023 | 003F | 0023 | 003A |

| -<br>/ | •    | ~[   | d    |  |  |  |  |  |
|--------|------|------|------|--|--|--|--|--|
| 003B   | 003B | 007E | 0040 |  |  |  |  |  |

#### Programming Ligatures - Elixir

| <    |      |      | >    | #    | {    | }    |      | >    | <    | >    |  |
|------|------|------|------|------|------|------|------|------|------|------|--|
| 003C | 002D | 002D | 003E | 0023 | 007B | 007D | 007C | 003E | 003C | 003E |  |

- <sup>18 pt</sup> When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes.
- <sup>16 pt</sup> When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This
- <sup>14 pt</sup> When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment.

- When a quantum system is not a macroscopic measuring 12 pt instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that
- When a quantum system is not a macroscopic measuring instrument or an 10 pt ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that would define as many pasts if they were real destinies. This property of convergence of virtual destinies is important to make use of the parallelism of quantum computation, but it seems obviously excluded for real destinies, which in general seem to have a single past.
- 8 pt / 6 pt When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that would define as many pasts if they were real destinies. This property of convergence of virtual destinies is important to make use of the parallelism of quantum computation, but it seems obviously excluded for real destinies, which in general see to have a single past. The formalism of the unitary operators implicitly uses the concept of time, since a unitary operator describes a change of state, but it says nothing a priori about space and mass. It seems false that space and mass are essentially classical concepts, that quantum physics does not explain their existence, and that therefore it can not explain by itself the classical appearances of the world. Most quantum equations have classical equivalents and we 18 pt

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes.

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This

<sup>14 pt</sup> When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths 12 pt

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that

- 10 pt When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that would define as many pasts if they were real destinies. This property of convergence of virtual destinies is important to make use of the parallelism of quantum computation, but it seems obviously excluded for real destinies, which in general seem to have a single past.
- 8 pt / 6 pt When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that would define as many pasts if they were real destinies. This property of convergence of virtual destinies is important to make use of the parallelism of quantum computation, but it seems obviously excluded for real destinies, which in general see to have a single past. The formalism of the unitary operator describes a change of state, but it says nothing a priori about space and mass. It seems false that space and mass are essentially classical concepts, that quantum physics does not explain their existence, and that therefore it can not explain by itself the classical appearances of the world. Most quantum equations have classical equivalents and we

- <sup>18 pt</sup> When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes.
- When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This
- <sup>14 pt</sup> When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths

- When a quantum system is not a macroscopic measuring 12 pt instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real. because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that
- When a quantum system is not a macroscopic measuring instrument or an 10 pt ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that would define as many pasts if they were real destinies. This property of convergence of virtual destinies is important to make use of the parallelism of quantum computation, but it seems obviously excluded for real destinies, which in general seem to have a single past.
- 8 pt / 6 pt When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that would define as many pasts if they were real destinies. This property of convergence of virtual destinies is important to make use of the parallelism of quantum computation, but it seems obviously excluded for real destinies, which in general seem to have a single past. The formalism of the unitary operators implicitly uses the concept of time, since a unitary operator describes a change of state, but it says nothing a priori about space and mass. It seems false that space and mass are essentially classical concepts, that quantum physics does not explain their existence, and that therefore it can not explain by itself the classical appearances of the world. Most quantum equations have classical equivalents and we

18 pt

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes.

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This

<sup>14 pt</sup> When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is 12 pt privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that

- 10 pt When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that would define as many pasts if they were real destinies. This property of convergence of virtual destinies is important to make use of the parallelism of quantum computation, but it seems obviously excluded for real destinies, which in general seem to have a single past.
- 8 pt / 6 pt When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that

When a quantum system is not a macroscopic measuring instrument or an ideal observer, no pointer state basis is privileged (see 5.5). One can still define multiple destinies by arbitrarily choosing one of its bases of states. But there is no reason to think that these destinies are real, because the states which define them are not, in general, states by which the system really passes. In reality, it is in a superposition of these states or in a state entangled with the environment. This is why this book calls them virtual quantum destinies. Another fundamental reason prevents the identification of Feynman paths with real destinies. They would attribute very many pasts to the same present state. Feynman paths do not form a tree structure because they can converge as easily as they diverge. A quantum state on a Feynman path is a point of convergence of many paths that would define as many pasts if they were real destinies. This property of convergence of virtual destinies is important to make use of the parallelism of quantum computation, but it seems obviously excluded for real destinies, which in general seem to have a single past. The formalism of the unitary operators implicitly uses the concept of time, since a unitary operator describes a change of state, but it says nothing a priori about space and mass. It seems false that space and mass are essentially classical concepts, that quantum physics does not explain their existence, and that therefore it can not explain by itself the classical appearances of the world. Most quantum equations have classical equivalents and we

#### **U.S. Graphics Company**

U.S. Graphics, LLC. Phoenix, AZ 85016 United States Engineering graphics for professionals. <u>berkeleygraphics.com</u>

Address inquiries to: inquiry@berkeleygraphics.com

#### **Design philosophy**

Emergent over prescribed aesthetics. Expose state and inner workings. Dense, not sparse. Explicit is better than implicit. Engineered for Human vision and perception. Regiment functionalism. Performance is design. Verbosity over opacity. Ignore design trends. Timeless and unfashionable. Flat, not hierarchical. Diametrically opposite of minimalism, as complex as it needs to be. Driven by objective reasoning and common sense. Don't infantilize users.

#### Designer

Neil Panchal https://neil.computer

#### **Further Information**

Report bugs and feedback to: <u>support@us.graphics</u>

Privacy Policy: https://usgraphics.com/legal/privacy-policy

Terms & Conditions: https://usgraphics.com/legal/terms-and-conditions

License Information: https://usgraphics.com/legal/license

#### **U.S. Graphics Company**

Engineering graphics.